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INTRODUCTION

This report describes a solution formulation for and its applications to

initial boundary value problems of structural dynamics and stress waves.

Excellent mmerical results are stated in conjunction with finite element

discretization. The basic concept of this approach is to establish a varia-

tional problem equivalent to a given initial boundary value problem, which is

in general, non-self-adjoint, through the use of an adjoint field variable and

the use of some large "spring" constants so that all the end conditions can be

transformed into-natural "boundary" conditions. Therefore, the shape func-

tions used need not satisfy any end conditions a priori in solving the varia-

tional problem in-the same manner as applying the Rayleigh-Ritz method for

self-djoint problems. This same concept was demonstrated in solving Initial

value problems in a paper delivered at the International Symposium on

Numerical Nhthods in Engineering Science series in 1978 and later published in

the Journal of Sound and Vibration. 1 In this present report, the formulation

is _.tended to Initial boundary value problems and the numerical results

obtained are also encouraging.

In the section which follows Imdistely, two initial boundary value

problems are stated. One is a longitudinal stress wave problem in a rod.

There is a discontinuity in the initial data given. We wish to trace this

discontinuity in the nmerical solution using the present apprcsch. The

second problem is a beam vibration problem under a moving concentrated load.

1 J. J. Wu, "Solutions to Initial Value Problems by Use of Finite lments -
Unconstrained Variational Formulations," 1977 Journal of Sound and Vibration,
53, pp. 341-356.,
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This is a such sore difficult problem since the partial differential equation

is of fourth order and the force Is singular in nature. In the next section,

variational problems equivalent to the given initial boundary problems are

established. The finite element dLscretization procedures are then briefly

recaptured. Lastly, numerical results are presented with some comnts.

INITAL BOUNDARY VALUE PROBLEMS

Two Initial boundary problems of structural dynamics will be stated In

this Section. The first one is of longitudinal elastic stress wave in a rod

with a sudden change In initial conditions. The second one is concerned with

lateral vibrations of a Ruler-Bernoulli bem subjected to a oving

concentrated load.

Longitudinal Stress Wave in a Rod

The rod Is fixed at one end and free at the other end. The discontinuity

data arises from the initial linear displacement, corresponding to a constant

stress, due to a force applied at the "free" end. This force suddenly

disappears at time sero causing a stress discontinuity at the free end. The

differential equation can be written as:

32 u 1 32 u 0 x 4 1

DKI' &1 2 O 4 t 4T

with
a2 - I/P (2)

where u - u(x,t) is the axial displacement; x,t are the coordinates in axial

direction and in time, respectively; p,1 are density and Young's modulus,

respectively, of the rod. meterial; A denotes length of the rod; and T denotes

some finite time of Interest.
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For the boundary conditions, me have

u(O't) *0

and

(1,t) -0

The dynmics of the problem are due to the Initial conditions.* It is semed

that the rod Is stretched to a linear displac eme nt by a force P which vanishes

at time t > 0 (see Figure 1). The initial velocity of the rod is iasumed to

be sero. Thus
P

UNA.)i- x and

(4)
au
- (X,0) -0

3t

Ps Is It A

Figure 1. A Rod Fixed at One Rod and Subjected to a Load P, which is

Suddenly Released at Time Zero.

It Is convenient to use dimensionless parameters. Let

u* -u/1 , x*m/ ,A tk -t/T()

Then, Sq. (1) In dimensionless form is

*b 2 - (6)
l* 2  0otft1

3
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where

b2 (7)&2

The boundary conditions b orm

(5). ~ ~ u*O~* (6) a0 (10).) To0mlf rtn,' hl rpteatrs.()

au*

u(,t) -0 ; u'(,t) - 0 (8)

ue(z,O) - f*t ; - (*,O) - 0 (9)

where

P* - (10)
As

Is the force In dimensionless form.

The stated problem to dimensionless form combine* Zqs. (6), (8), and (9)

with the now dimensionless parameters related to physics1 counterparts by Zqe.

(5). (6), and (10). To simplify wrting, it shll drop the asterisks M* In
~Zqx. (6), (8), and (9), ad rewrite them as

e -" -b2u - 0 ; (6,)

Su(O't) -0 ;u'(l,t) - 0 (61)

U(Z~t) ft (XO) - 0 (9')

where a prime (')deicates differentiation with respect to x and a dot ()

with respect to t.

Sea  Mratin Uner 11MI Loads

! Lot us consider the differential equation of a uniform R~uler-Barnou11i

Sbesis vibJected to a moving, concentrated force.

Ry"+p--y Pd-(Zp-x) 0 4 T I

aelF""4- -(14



where

Zp m Young's modulus, density of the ben material

1,A M second ment, are& of the bes's cross-section

V- M length of the bem

y-y(xt) - beam deflection

XIt - coordinates in berN's axial direction and in time

P - agnitude of the concentrated force

6(1) - Dirac delta function

xp-zp(t) - location of P

T - some finite time of interest

Again it will be convenient to employ nondimensional parameters and

equations. These will be introduced by way of Eq. (11). Thus, let

-/ * -x/1 , t* -t/T (12)

Using Eq. (12) in Sq. (11), one has

y*". + yy*. Q8(xp*-x*) 1 (13)
0,x* 1

where
y C2 . !A-"' p- Q , -*- (14)

T 91 31
Also note in Eq. (13) that the differentiations are now with respect to the

nondlmensionallsed variables x* ant t*. From now on, e shall use Eq. (13)

with the asterisks dropped altogether.

- O (l
y"" + ky + y 2 y Q(Xp-) (15)

Oc4t 4 1

5
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VARIATIONAL PROBLES - A GENERALIZED RAYLEIGH-RITZ METHOD

For the stress wave problem in the previous section, consider a

variational problem.

6I0 - 0 (16a)

with
1 1

1o - I0(uv) - f f (-u'v'+b 2uv)dxdt (16b)
0 0

where u(x,t) and v(x,t) are said to be adjoint to each other. It is a simple

matter to see that this problem is an indeterminate one. However, the

functional of Eq. (16b) can be modified to a variational problem which is

equivalent to the boundary/initial problem of Eqs. (6'), (8'), and (9'). Thus

cons ider

61 - 0 (17a)

with 1 1
I - I(uv) - f f0 (-u'vf+b v)dxdt

+ k1 f u(O,t)v(O,t)dt
0

+ k2b
2 f [u(x,0) - uo(x)lv(x,l)dx + b2 fI ul(x)v(z,0)dx (17b)

0 0

We shall take 'the first variation of the function I(uv) of Eq. (17b) in

such a manner that 6v is completely arbitrary while 6u is set to sore

identically. Hence, by mane of integration-by-parts, one has

6



1 0 (u"-b2u) 6vdzdt

-1 u'(1,t)6v(1,t)dt

+ f [u(O,t) + klu(O,t)I6v(O,t)dt
0

+ bf (,(x,l) + k2[u(X,O) - uo(x)}6v(x,l)dx
0

0 [tu(xO) - Ui(x)]6v(x.O)dx . 0 (18)

The fact that av(xt) is complately arbitrary enables us to conclude from Eq.

(18) that

e -b 2 u - 0 ; (19a)

u'(1,t) - 0

u'(O,t) + k1u(O,t) - 0

u(zl) + k2lu(xO) - uo(z)] - 0 (19b)
and

u(z,O) - Ul(z) - 0

It is tbm oberved that the initLql boundary value problm defined by Eqs.

(19a) and (19b) reduce* to that of Eqs. (6'), (89)0 and (9') If om lets k1

and k2 go to fiity* (and with uo() - fnd ul(x) - 0). This fact

eugests that the variational problem of lq. (17a) and (I7b) can be used as a

basis of a finite eslmnt discretization for the appronisate solutions to the

original initial boundary problem. It should be noted that all the mailiary

*TIs pteee s satimes referred to s the penalty fumtion inthod. See,
for =mpe, reference 2.

23. . lQ* aarger, Optimsation by Vector Space lbtbed, John Mley, 1909, p.
302.
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conditions in Zqs. (19a) and (19b) are the so-called natural boundary

conditions. They are the consequence of the variational problem - just like

the differential equation itself. Por this reason, the above solution is

referred to as a Generalized Raylelgh-Ritz Mhthod.

By a similar process, one can establish a variational problem for the

vibration problem of a beam under a moving load. In this case, one has

61 I f 1(u"6v" -uv- 6(x-x)6vjdxdt
0 0

+ f fklu(O,t)6v(O,t) + k2u'(O,t)6v'(O,t)0

+ k3u(It)6v(1,t) + k4u'(1,t)6v'(1,t)jdt

1
+ f 0 k5u(X,O)6v(x,l) + k6u(x,0)6v(x,0)Jdx -0 (20)

Through integrations-by-parts,

81 - f 0f 0 i"" + u - i(x-x)]6v(x,t)dxdt

00

I

+ fo (kS( u(x,O)0- uz1vz) + (k6+1)[u(x,0)-OI6v(z,O))dx - 0 (21)

The original differential equation and the boundary and initial conditions are

recovered from the equation above due to the arbitrariness of the variations

6(x,t) and by properly selecting the values of ki,sp



FINITE 3K MT DISCRITIZATION

Only essential features will be stated In the finite element discretiza-

tions here. The rgion of & unit square (0 C z f 1; 0 O t ( 1) Is further

divided into KIL rectangles by taking K divisions in x direction and L

divisions in t direction. Local coordinates (C,n) in each (ij)th element are

related to (xt) by these equations:

C -(i) - rX - I + I
(22)

1 - n(j) - Lt - j + 1

Within each elemnt, the unknown function u(x,t) is replaced by the

approxiaation:-

u ( i ,j ) ( 9 ,1) - iT ( 9 1) U (i ,J ) ( 2 3 )

8v(L.j)(C-.n) - kT(C.n) 6V(L,j)

where a(C,ii) is the shape funation vector and U(ij), 6V(L,j) are the

generalize4 coordimates. The specific form of a(C,u) employed here is such

that each one of the sixteen components is:

k - 1,2, .... 16
ak((,n) - bL(C)bj(n) - (24)

ij - 1,2.3,4

with
hi(€) _ I - 3C2 + 20

b2(M) - C - W +

(25)
b3(C) - 32 - 2C'

b4(M) - .C2 + CS

and the relations between index k and the pair (ij) are given In Table .

I 
_



TA LS I. RELATIONSHIP BETWEEN (i,J) AND k IN EQUATION (24)

.- (iJ) k (iJ)

1 (1,1) 9 (1,3)

2 (2,1) 10 (2,3)

3 (1,2) 11 (1,4)

4 (2,2) 12 (2,4)

5 (3,1) 13 (3,3)

6 (4,1) 14 (4,3)

7 (3,2) 15 (3,4)

8 (4.2) 116 (4,J)L

Using Zqs. (22) through (25)-in Eq. (17) end the fact that V(ij) Is

completely arbitrary, the estrix equations for the unknowns U(ij) can be

routinely asesubled and solved. Further details will be omitted here.

NUMIRICAL REWLTS AND DISCSSION

Same of the moerical results 4re presented in this section. For the

stress meve problems, Table I provides solutions of v(x,t), 3u/l(x,t) endIu/Dt(i,t) for z - O, 0.1, 0.2, ...1.0 and for t - 0, 0.5, 1.0, 1.5, and 2.0.

During this time interval, the original displacment has gone through a

complete sign reversal as shown in Figure 2. This particular set of data ws

obtained by taking K - 10 and L - I with restart procedures, i.e., the final

*br act solution to this problem, "a for exmple, Reference 3.

3L. S. Jacobson and 1. S. Ayre, ngineering Vlbrations, NcGraw-4i12, 1965, pp.
472-474.
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solution in the first time step vas taken as the initial condition of the next

step in time, and so on. Values of the exact solutions are given in

parentheses. Excellent agreement is observed. The fact that the

discontinuity of the solution follows along without much oscillation is worth

mentioning.

For the beam vibration problem with a moving force, same typical

numerical solutions are given in Tables IlI and IV. The moving concentrated

force is assumed to travel at a constant velocity c (although this is not at

all a restriction for the present method) such that

XMt - ct

where c is dimensionless velocity. For small c, c - 0.0001, and the

displacement solutions become those of static deflect ions as shown in Table

111. For a large c (compared with unity), c - 10, and solutions show dynamic

effects as indicated in Table IV. As a comparison, solutions obtained by the

Fourier series and Laplace transform method4 are given in parentheses. Good

agreement exists even in cases with considerable dynamic effect.

In conclusion, this report has demonstrated through examples of

structural dynamics an approximate solution formulation (which is both aI weighted mthod and a variational problem), the-finite element implementation,

and some favorable numerical results. Although only linear problems have been

mentioned, an application to solutions of non-linear problems is now being

investigated.

4 L. Fryba, Vibrations of Solids and Structures Under ?bving Load, Noordhoff,
1971.
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